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Abstract

A systematic development of the macroscopic field equations (conser-
vation of mass, linear and angular momentum, energy, and Maxwell’s
equations) for a multiphase, multicomponent medium is presented. It is
assumed that speeds involved are much slower than the speed of light and
that the magnitude of the electric field significantly dominates over the
magnetic field so that the electroquasistatic form of Maxwell’s equations
applies. A mixture formulation is presented for each phase and then av-
eraged to obtain the macroscopic formulation. Species electric fields are
considered, however it is assumed that it is the total electric field which
contributes to the electrically induced forces and energy. The relation-
ships between species and bulk phase variables and the macroscopic and
microscopic variables are given explicitly. The resulting field equations
are of relevance to many practical applications including, but not limited
to, swelling clays (smectites), biopolymers, biological membranes, pulsed
electrophoresis, and chromatography.
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1 Introduction

We attempt to address the following issue: in a composite or porous medi-
um, how do the electro-thermodynamic variables of each individual constituent
contribute to the electro-thermodynamic variables of the mixture as a whole?
In other words, given information about individual materials, determine the
relationship between the electro-thermodynamic properties of individual com-
ponents and the electro-thermodynamic properties of the averaged multi-phase
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multi-component material. We combine mixture theory and averaging to obtain
macroscopic field equations for a deformable porous medium in which species
may induce different electric fields but forces on the species are determined by
the net electric field of the mixture.

The constituent forms of Maxwell’s equations were first developed by Kel-
ly [24], although he did not consider deformable media. A binary mixture of
electro-magnetic fluids has been used to model plasma with single electric and
magnetic fields, see e.g. Kulsrud [25]. Benach and Müller [2] applied single
electric and magnetic fields to model a mixture of dielectric fluids. The idea
of using multiple electric fields has been used historically in modeling a binary
mixture of superconducting fluids [9]. Eringen [14] developed a mixture theo-
retic approach for a multiple constituent electro-magnetic deformable medium
with multiple electro-magnetic fields and applied the model to combinations of
conducting/superconducting fluids and elastic solids. This article differs from
[14] in that multiple phases are considered, a different philosophy is taken in
the electric fields of constituents accounting for energy and momentum balance,
and the mixture may swell. Mixture theory alone does not allow for this de-
velopment. An upscaling approach is required to map microscopic information
into well-defined macroscopic variables.

On the microscale one can distinguish between phases or materials, while
the macroscale is defined to be the scale at which the material appears to be
homogeneous. There are several upscaling techniques to choose between: ho-
mogenization (matched asymptotics) [5, 12, 35], volume averaging in the sense of
Whitaker [31, 33, 34, 41, 42], spectral integral methods [17], generalized Taylor-
Aris methods [7], and hybrid mixture theory [1, 3, 21, 22]. All but the latter
of these methods upscale field equations and constitutive equations from the
microscale to the macroscale. The hybrid mixture theoretic approach that we
adapt does not upscale constitutive relations.

We present constituent, or species, electro-quasistatic equations for a mix-
ture, give the relationship between the species and single-phase properties, and
then volume average these governing equations for a multicomponent, multi-
phase medium to obtain the governing equations for the medium at the macroscale.
At this scale, the medium is viewed as a continuum where thermodynamic
properties for each constituent of each phase exist spatially everywhere. The
relationships between the microscale variables and the macroscale variables are
explicitly given. For ease of exposition we assume that interfacial properties
such as excess mass density, free charge on interfaces, and interface currents,
are negligible; although the present theory can be extended to incorporate these
effects [19]. The medium is referred to as multi-phase, but it is understood that
this includes composites (e.g. a medium composed of two solid materials), or a
porous medium, where the multiphases may be gas, immiscible liquids, and/or
solid.

Maxwell’s equations involve species electric fields, but the macroscale mo-
mentum and energy equations for species are based on the philosophy that the
force or work induced by the electric field acting on a species is generated by
the total electric field. This differs from what has been done in the past [14, 24].
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The species electric fields are defined through Gauss’ Law since the charge and
polarization density are well defined for a species. The species electric fields
then manifest themselves in the macroscale equations through terms involving
gradients or time-rate-of-change of the volume fraction.

The resulting field equations may be used to obtain restrictions on admissible
constitutive relations by applying the methods of either extended thermodynam-
ics [30], or rational thermodynamics [13, 10]. The need for these equations, and
the explicit relationships between the macroscopic and microscopic variables is
demonstrated by the increasingly complex porous media being studied. Recent
examples include Huyghe and Janssen [23] and Gu et al. [20] who both use a
simplified version of the equations developed herein to model an incompressible
porous medium composed of an electrically charged solid phase saturated with
an ionic fluid.

2 Microscale Equations

In this section we present the governing field equations at the microscale. The
equations include mass balance, conservation of linear and angular momentum,
conservation of energy, entropy balance, and Maxwell’s equations. The complete
form of these equations for a bulk phase (single phase with no species) are given
by Eringen [15] and Tiersten [38], and here we follow their formulation and
notation. The derivation of these equations follows from the particle level in
the spirit of Lorentz [27].

It is assumed that the dominant field source is the electric field and that
velocities are small compared to the speed of light (non-relativistic). Follow-
ing Melcher [28], the electroquasistatic system of equations are obtained by
non-dimensionalizing Maxwell’s equations, expanding each variable in a Tay-
lor series about the variable representing the ratio of the electromagnetic wave
transit time to the characteristic time of the problem, and taking the zero-order
equations as the quasi-static formulation. The difference between the electro-
quasistatic formulation and the magneto-quasistatic formulation arises in the
choice of the normalizing parameters: in the former a reference electric field is
used, and in the latter a reference magnetic field is used.

It is necessary to postulate governing field equations which hold for each
specie. Following Truesdell [40], we adhere to the following principles: (1) all
properties of the mixture must be mathematical consequences of properties of
the constituents; (2) to describe the motion of a constituent, we may perceive
it as being isolated from the rest of the mixture, provided we allow properly for
the actions of the other constituents; (3) the motion of the mixture is governed
by the same equations as is a single body. Further, due to the incorporation
of electric fields, some assumptions must be made regarding the form of the
momentum and energy balance laws. It is assumed that (4) the “primitive” form
of the balance laws is the one incorporating the work and force, and not, e.g. the
electro-stress tensors. This is in contrast to [8, 26] in which the electro-magnetic
stresses are considered the primitive quantity. The forms are equivalent up to the
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classical Maxwell’s equations, but are not equivalent in the mixture formulation.
Hence, until experiments prove otherwise, the choice is purely philosophical.
The last principle is that (5) within the electrical work and force terms in the
energy and momentum balance equations respectively, it is the total electric
field which acts on the species, and not just the electric field associated with
the species. This last assumption guarantees that principles (1), (2), and (3)
are not violated.

Although the form of the equations for the constituents is natural for some
balance laws (conservation of mass, conservation of charge density), it leads to
un-intuitive variables in other equations, e.g. the partial stress tensor. However,
we do not want to mix bulk phase equations with constitutive equations, and
hence formulate constitutive equations for all field equations. To account for
the effects of the other constituents, exchange terms, denoted by variables with
a carrot ·̂, are introduced.

The species’ equations can then be summed to obtain the governing equation
for the phase, and the relationship between the species properties and their bulk
phase counterparts are then obtained. The details regarding this procedure for
the field equations with no electric or magnetic effects can be found in Trues-
dell and Toupin [39] or Bowen [6]. For the parallel development of Maxwell’s
equations, see Kelly [24].

We now present the governing equations for a mixture in a single phase
at the microscale assuming electroquasistatics. The relationships between the
species’ variables and the bulk phase variables are obtained by summing the
field equation over all constituents and relating the variables so as to obtain the
field equation at the bulk scale. These relationships are given in Appendix B.

Conservation of Mass

Dj(ρj)
Dt

+ ρj(∇ · vj) = ρj r̂j (1)

where Dj

Dt is the material time derivative given by

Dj

Dt
=

∂

∂t
+ vj ·∇ (2)

and where r̂j is the rate of mass transfer to species j from other species due
to chemical reactions. Summing over constituents we obtain the bulk phase
equation

Dρ

Dt
+ ρ(∇ · v) = 0 (3)

with the restriction
N∑
j=1

ρj r̂j = 0. (4)

This restriction merely states that within an isolated system consisting of a
single phase there is no net loss of mass.
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Gauss’ Law
For this equation we introduce the electric field for species j, Ej . Gauss’

law for constituent j can then be expressed as

∇ ·Dj − qje = d̂
j

(5)

whereDj is the displacement vector for the jth component only, qje is the charge

density of constituent j, and d̂
j

is the excess charge density due to the presence
of other species. The displacement vector for constituent j is defined in terms
of the electric field and polarization density as:

Dj = ε0E
j + P j , (6)

where ε0 is the permittivity in a vacuum. In MKS units, the permittivity has
the value of 8.854× 10−12 Farads per meter [28].

The species’ electric field, Ej , must satisfy the restriction that the total

electric field, E, is the sum of the species’ electric field, i.e.
N∑
j=1

Ej = E. If

there is no external electric field then E is just the electric field generated by
all the species. There is no unique way of incorporating the externally applied
electric field into these equations. One could treat the external electric field as
the presence of another species, say species N , in which this “external” species
has no other electro-thermodynamic properties. Then species N would have no
charge density, no associated polarization, etc. and these terms would be set to
zero in the governing equations. Alternately, a portion of the external field could
be assigned to each Ej so that Ej is the sum of the electric field generated by
species j and a weight, wj , times the external electric field. The weights must
sum to one, and may, for example, be proportional to the amount of charge,
or maybe the mass fraction of species j. A third choice might be to define
the species electric field so that the exchange term d̂

j
is zero. This simplifies

computations down the road although its physical interpretation is not clear.
These choices have no affect on the following derivation, as long as Ej sum
to the total electric field. However, in formulating a mathematical model it is
necessary to choose a particular definition and remain consistent.

Summing over constituents gives the bulk phase Gauss law:

∇ ·D − qe = 0 (7)

where D =
N∑
j=1

Dj and with the restriction

N∑
j=1

d̂
j

= 0. (8)

which states that the net effect of excess charge densities produced by the species
acting on each other must sum to zero.
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Faraday’s Law
Faraday’s law for the quasi-static case for species j is given by

∇×Ej = σ̂j or Ejk,l − E
j
l,k = εlkmσ̂

j
m, (9)

where the second form of the equation is in indicial notation with repeated
indices denoting summation, a comma denotes differentiation, and εlkm is the
permutation tensor. Here σ̂j incorporates the effect of the electric fields, Ei,
i 6= j.

Summing over species gives the bulk phase Faraday’s law,

∇×E = 0, (10)

where E =
N∑
j=1

Ej is the total electric field. This relationship is assumed

throughout. The required restriction obtained from this summation is that

N∑
j=1

σ̂j = 0. (11)

Ampère’s Law
Ampère’s law for the quasi-static case for species j is given by

J j = −∂D
j

∂t
+∇×Hj −∇× (P j × vj) + ĥ

j
(12)

where Hj is the magnetic field intensity and ĥ
j

accounts for the effects of other
constituents.

Summing over species gives the bulk phase version of this law,

J = −∂D
∂t

+∇× cH −∇× (P × v) (13)

where

N∑
j=1

ĥ
j

= 0. (14)

Conservation of Electric Charge
This equation can be derived by taking the divergence of Ampère’s law and

the time derivative of Gauss’ Law and summing the results. Of all Maxwell’s
equations, this equation is the most accepted in mixture form since each com-
ponent has a well defined physical interpretation. The conservation of electric
charge for species j is

∇ · (J j + qjev
j) +

∂qje
∂t

= q̂j + ρjzj r̂j , (15)
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where vj is the velocity of species j relative to a fixed frame of reference, J j

is the free current density of constituent j measured relative to species j, zj

is the charge per unit mass and q̂j is the rate of gain of charge density due to
the presence of other constituents but not due to chemical reactions. The free
current density, denoted by J j , is related to the free current density relative to
a fixed (Eulerian) frame of reference, J j , by

J j = J j − qjevj . (16)

Another form of this equation is obtained by subtracting out the conservation
of mass to reduce redundancy, and this yields

ρj
Djzj

Dt
+∇ ·J j = q̂j . (17)

Summing over constituents yields

∇ · (J + qev) +
∂qe
∂t

= 0, (18)

where
N∑
j=1

[
q̂j + ρjzj r̂j

]
= 0. (19)

This equation states that the net gain or loss of total charge of constituent j
due to ion transfer or chemical reactions is zero in an isolated system.

In addition, because of the coupling between Gauss’ law, Ampère’s law, and
the conservation of charge, there is a coupling between the exchange terms:

∇ · ĥ
j
− ∂d̂

j

∂t
= q̂j + qje r̂

j .

Linear Momentum Balance
This equation is given by

ρj
Djvj

Dt
−∇ · tj − ρjgj − qjeE − P

j ·∇E = ρj î
j

(20)

where tj is the partial Cauchy stress tensor and gj is the external body force
acting on constituent j. The exchange term, î

j
, takes into account all gain of

momenta due to the presence of other species but not due to chemical reactions.
The last term on the left-hand-side is usually referred to as the Kelvin force,
and the adjacent term (on the LHS) is referred to as the Lorentz force [15]. Note
that unlike [14, 24] we assume it is the total electric field which contributes to
these forces.

Summing over constituents gives the conservation of linear momentum for
the entire phase,

ρ
Dv

Dt
−∇ · t− ρg − qeE − P ·∇E = 0. (21)
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In this form t is the Cauchy stress tensor and is related to the partial Cauchy
stress tensors, tj , in the same way as the purely thermo-mechanical mixture the-
ory (no electric field). This is what naturally appears in the energy conservation
equation given below, i.e. if other terms are incorporated into the definition of
the bulk phase stress tensor, then these additional terms must be subtracted out
where the stress tensor appears in the conservation of energy and the restriction
must be modified. The specific relationship between the constitutive variables
and the bulk phase variables are given in Appendix B. The restriction for the
conservation of linear momentum is:

N∑
j=1

[
ρj î

j
+ ρjvj r̂j

]
= 0 (22)

The restriction states that the net momentum gained between species due to
mass transfer or mechanical momentum must be zero.

Angular Momentum Balance
In indicial notation, the angular momentum equation is

εklmt
j
kl + εklmP

j
kEl = −ρjm̂j

m, (23)

where m̂j
m is the mth component of the net rate of gain of angular momentum

due to the presence of other species. The negative sign on the right hand side is
in keeping with the convention that exchange terms (in this case m̂j) represents
a rate of gain of a property.

Summing over constituents yields

εklmtkl + εklmPkEl = 0m (24)

with the restriction that
N∑
j=1

ρjm̂
j = 0. (25)

This equation states that the net internal angular momentum for this single-
phase medium, consisting of the sum of angular momenta generated by species
acting on each other, must be zero.

Conservation of Energy
The species energy balance is

ρj
Djej

Dt
− tj :∇vj −∇ · qj − ρjhj −J j ·E − ∂P j

∂t
·E

−
[
∇ · (vjP j)

]
·E = ρjQ̂j (26)

where the colon indicates a tensor dot product (e.g. a:b =
∑
i,j aijbij) and Q̂j is

the rate of energy gain due to the presence of other constituents but not due to
chemical reactions (mass transfer) or momentum transfer. The sum of the last
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three terms on the left-hand-side is the electrical energy source. As in the linear
momentum balance we assume that electric energy is due to the total electric
field, not just part of it. These three terms take on a variety of forms [15, 28]
which are related through the Maxwell equations (Gauss’ law, Faraday’s law,
Ampère’s Law, and Conservation of Electric Charge). The form presented here
is the one derived directly from microscale electrical forces using a statistical
averaging approach (see Eringen [15]) making no use of Maxwell’s equations,

since otherwise exchange terms (d̂
j
, σ̂j , q̂j) appear.

Summing over constituents yields

ρ
De

Dt
− t :∇v −∇ · q − ρh−J ·E − ∂P

∂t
·E −

[
∇ · (vP )

]
·E = 0 (27)

with the restriction

N∑
j=1

[
ρjQ̂j + ρjvj · î

j
+ (ej +

1
2
vj · vj)ρj r̂j

]
= 0. (28)

Entropy Balance
The entropy balance equation is one way of representing the second law of

thermodynamics:

ρj
Djηj

Dt
−∇ · φj − ρjbj = ρj η̂j + ρjΛ̂j (29)

where η̂j is the rate of transfer of entropy from other constituents. Here Λ̂j is
the rate at which entropy is generated.

Summing over constituents yields

ρ
Dη

Dt
−∇ · φ− ρb = ρjΛ̂ (30)

with the restriction
N∑
j=1

[
ρj η̂j + ρjvj r̂j

]
= 0. (31)

It is postulated that the total rate of entropy generation, obtained by summing
over all species, is non-negative. All relations for this equation remain unaltered
from the purely thermo-mechanical mixture theory.

3 Macroscale Equations

In this section we average the microscale equations and obtain equations at the
macroscale. At the macroscale, each thermodynamic variable is defined spatially
everywhere, so that if there are 3 phases, with each phase containing N con-
stituents, the medium is viewed as 3N overlaying continua. The first subsection
discusses the notation and assumptions required to upscale, and the following



Swelling Porous Media with Electroquasistatics 10

subsections present the macroscale field equations and how each variable relates
to the microscale. To the authors’ knowledge, the electroquasistatic equations
have not been presented before.

3.1 Averaging Procedure

Consider a multi-constituent multi-phase medium where the phase is denot-
ed by Greek letters (α, β, γ), and the constituent or species is denoted by
j, j = 1, ..., N . For ease of exposition we assume that interfaces contain no
thermodynamic properties. Consequently it is assumed no amount of mass,
momentum, energy, charge, current, etc. is lost when being transferred between
phases. Interfacial effects can be included by pursuing any of the approaches of
[18, 19, 29], however, we shall omit these terms to keep the level of algebra at a
minimum.

The governing microscopic equations for each phase were given in Section 2,
but to distinguish between phases we introduce the additional Greek superscript.

Assuming no surface discontinuities, the constituent, microscopic field e-
quations of mass, charge, linear momentum, angular momentum, energy, and
entropy can be expressed for a given phase, α, as (following the notation of
Eringen, [13]):

∂

∂t
(ρjψj) +∇ · (ρjvjψj)−∇ · ij − ρjf j − F j = ρjGj + ρjψ̂

j
(32)

where ψj is the mass-average (over the phase) thermodynamic property of con-
stituent j, vj is the mass-average velocity vector, ρj is the mass density, ij is the
flux vector, f j is the body source, F j is the supply due to electrical effects, Gj is
the net production, and ψ̂

j
represents the influx of ψ from all other constituents

(e.g. due to chemical reactions). If there is only one constituent, ψ̂
j

is zero.
For each of the respective equations, the quantities given in Table 1 are used.

Table 1: Quantities for Equation (32)

Quantity ψ i f F ψ̂ G
Mass 1 0 0 0 r̂ 0
Charge z J 0 0 q̂ + ρzr̂ 0
Linear Momentum v t g + gI F e î+ r̂v 0
Angular Momentum r × v r × t r × g r × F e +Ce r × (̂i+ r̂v) 0
Energy e+ 1

2v
2 tv + q g · v + h We Q̂+ î · v + r̂(e+ 1

2v
2) 0

Entropy η φ b 0 η̂ + r̂v Λ

For conciseness we also introduce the force, couple, and work due to the electric
field, respectively:

F je = qjeE + P j ·∇E (33)
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= −∇ ·
(
DjE − 1

2
εoE

j ·EI
)

+ d̂
j
E +

1
2
εo
(
∇E ·Ej −∇Ej ·E

)
(34)

Cj
e = P j ×E (35)

W j
e = J j ·E +

∂P j

∂t
·E +∇ · (vjE · P j) (36)

=
∂

∂t

(
−1

2
ε0E

j ·E
)
−∇ ·

(
E ×Hj

)
+∇ ·

(
P jvj ·E

)
+ĥ

j
·E − 1

2
εo

(
∂Ej

∂t
·E − ∂E

∂t
·Ej

)
(37)

(see also equations (20,23,26)). Definitions of all terms are given in Appendix
A. The forms of F je and W j

e are a consequence of which form one assumes to
be the most primitive. If one assumes that the second forms of F je and W j

e ,
(34, 37), are the most primitive then miscellaneous terms would appear in the
first forms. The two forms are needed in order to obtain conditions which
correspond directly with jump boundary conditions across an interface. The
averaging procedure is based on ideas laid down in [16, 41, 42, 37]. Several
methods are available, but we choose the computationally simplest. Equations
are averaged by weighted integration using the indicator function of the α-phase.
To avoid the mathematical difficulties of, for example, defining a derivative of
the averaged quantities resulting from using such a weighting function, one must
treat the averaged quantity as a distribution [36, 32].

It should be noted that using this simple weight function may mean that
the averaged value may not represent the actual values being measured. To
account for the measuring technique, one needs to choose a weight function
which represents the instrument used to measure the physical properties [11].
Extensions of the presented theory to such cases are straight forward.

Let δV be a volume, δVα the portion of δV in the α-phase, and δAαβ the
portion of the interface within δV. It is assumed that δVα and δAls are isolated
simply connected regions. If the magnitude of δV is denoted by |δV| then the
volume fraction can be expressed as

εα(x, t) =
|δVα|
|δV |

(38)

so that ∑
α

εα = 1. (39)

The indicator function is

γα(r, t) =
{

1 if r ∈ δVα
0 if r ∈ δVβ , β 6= α.

We may write r = x + ξ where x is the macroscale spatial variable, and
ξ varies over δV. To obtain the macroscale equations formally, one multiplies
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equation (2) by γα(r), integrates over δV with respect to ξ (x is held fixed) and
divides by |δV|. Then in order to obtain equations of the forms which mirror
the microscale equations, the following theorem is applied to interchange the
order of differentiation and integration.

Theorem 1 If wαβ is the microscopic velocity of interface αβ and nα is the
outward unit normal vector of δVα indicating the integrand should be evaluated
in the limit as the αβ-interface is approached from the α-side then

1
|δV |

∫
δV

∂f

∂t
γαdv(ξ) =

∂

∂t

[
1
|δV |

∫
δV

fγαdv(ξ)
]

−
∑
β 6=α

1
|δV |

∫
δAαβ

fwαβ · nαda(ξ) (40)

1
|δV |

∫
δV
∇rfγαdv(ξ) = ∇x

[
1
|δV |

∫
δV

fγαdv(ξ)
]

+
∑
β 6=α

1
|δV |

∫
δAαβ

fnαda(ξ). (41)

After averaging equation (32), the system is considered to be a mixture so
that each component in each phase and each bulk phase now have thermo-
dynamic properties existing at each point within the macroscopic body. The
macroscopic definition of each field variable in terms of its microscopic counter-
part, making no small perturbation assumptions, is given in Appendix C.

For more details regarding this procedure for the field equations with no
electric or magnetic effects see for example Whitaker [41], Slattery [37] and
Plumb and Whitaker [31]. For the parallel development of Maxwell’s equations
with constitutive assumptions, see Rio and Whitaker [33, 34].

3.2 Macroscopic Conservation Equations

Conservation of Mass
The macroscopic mass balance for constituent j in phase α is

Dαj (εαραj )
Dt

+ εαραj (∇ · vαj ) =
∑
β 6=α

εαραj ê
αj
β + εαραj r̂αj (42)

where Dαj

Dt is the material time derivative given by

Dαj

Dt
=

∂

∂t
+ vαj ·∇, (43)

and êαjβ represents the net rate of mass gained by constituent j in phase α from
phase β:

ê
αj
β =

1
ραj |δVα|

∫
δAαβ

ρj(wj
αβ − v

j) · nα da, (44)
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where wj
αβ is the velocity of species j at interface αβ.

The bulk phase counterpart is given by

Dα(εαρα)
Dt

+ εαρα(∇ · vα) =
∑
β 6=α

εαραêαβ . (45)

The net gain of mass of the bulk phase must be zero, implying that:

N∑
j=1

ραj r̂αj = 0 ∀ α. (46)

Further, since the interface is assumed to be massless, we have the restriction:

εαραj ê
αj
β + εβρβj êβjα = 0, j = 1, ..., N. (47)

Using (45) we can re-write (42) as

εαρα
DαCαj

Dt
+∇ · (εαραjvαj ,α) =

∑
β 6=α

εαραj (êαjβ − ê
α
β) + εαραj r̂αj . (48)

Gauss’ Law
The macroscopic form of Gauss’ law for constituent j in phase α is

∇ · (εαDαj )− εαqαje = εαd̂
αj

+
∑
β 6=α

εαd̂
αj

β (49)

where Dαj is the volume average of Dj . Here d̂
αj

β represents the effect con-
stituent j in phase β has on the charge of the same constituent in phase α:

d̂
αj

β = − 1
|δVα|

∫
δAαβ

Dj · nα da. (50)

Other relations are given in Appendix C.
Summing over j yields the bulk phase form:

∇ · (εαDα)− εαqαe =
∑
β 6=α

εαd̂
α

β . (51)

The restrictions include

N∑
j=1

d̂
αj

= 0 ∀ α (52)

εαd̂
αj

β + εβ d̂
βj

α = 0, j = 1, ..., N. (53)

The first restriction states that the net effect constituents have on each other
within phase α must be zero, and the second states that the interfacial displace-
ment is zero, which is a consequence of assuming that the interface contains no
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electric/thermodynamical properties. Recall that if there is no surface charge
or polarization the jump condition between two materials states that the jump
in the normal component of the displacement vector must be zero [15]:

n · [[D]] = 0. (54)

Integrating this equation over δAαβ shows that this theory is consistent with
the classical formulation for the jump condition, equation (53).

Faraday’s Law
The macroscopic form of Faraday’s law for constituent j in phase α is

∇× (εαEαj ) = εασ̂αj +
∑
β 6=α

εασ̂
αj
β (55)

or in indicial notation

(εαEαjk ),l−(εαEαjl ),k = εlkmε
ασ̂αjm +

∑
β 6=α

εlkmε
α(σ̂αjβ )m (56)

where

σ̂
αj
β = − 1

|δVα|

∫
δAαβ

nα ×Ej da, (57)

which represents the effect phase β has on the electric field of phase α. Upon
summing, the bulk phase form of Faraday’s law becomes:

∇× (εαEα) =
∑
β 6=α

εασ̂αβ (58)

with restrictions

N∑
j=1

σ̂αj = 0 ∀ α (59)

εασ̂
αj
β + εβσ̂βjα = 0 j = 1, ..., N. (60)

Equation (60) corresponds precisely with the classical jump condition across
interfaces [15]

n× [[E]] = 0, (61)

where the double square brackets indicate the difference of the quantity evalu-
ated on either side of the interval, if (61) is integrated over the surface δAαβ .
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Ampère’s Law The macroscopic form of Ampère’s law for the quasi-static case
for species j of phase α is given by

εαJαj = −∂(εαDαj )
∂t

+∇× (εαHαj )−∇× (εαP αj × vαj ) +
∑
β 6=α

εαĥ
αj

β + εαĥ
αj

(62)

where

ĥ
αj

β =
1
|δVα|

∫
δAαβ

[
Djwj

αβ · n
α − (Hj − P j × vj)× nα

]
da (63)

represents the effect of phase β on phase α. Summing over species gives the
bulk phase version of this law,

εαJα = −∂(εαDα)
∂t

+∇× εαHα −∇× (εαP α × vα) +
∑
β 6=α

εαĥ
α

β (64)

where the restrictions are

N∑
j=1

ĥ
αj

= 0 ∀α (65)

εαĥ
αj

β + εβĥ
βj

α = 0 j = 1, ..., N. (66)

The jump condition associated with Ampère’s law is given by [15]:

n× [[H −w ×D]] = 0 (67)

where the polarization at the surface has been neglected. Equation (63) does
not correspond directly with the jump condition given in [15] since (67) is de-
rived directly from the global surface area form of Ampére’s law, and (63) is
derived from the bulk-phase form of the law. This causes a loss of information;
specifically, (63) does not include a term corresponding to wj(n ·Dj).

Conservation of Electric Charge
The conservation of charge equation at the macroscale becomes

∇ · (εαJ αj + εαqαje v
αj ) +

∂

∂t
(εαqαje ) = εαq̂αj + εαραjzαj r̂αj

+
∑
β 6=α

εαραj (Ẑ
αj

β + zαj ê
αj
β ) (68)

where

Ẑ
αj

β =
1

ραj |δVα|

∫
δAαβ

[
qje(w

j
αβ − v

j)−J j
]
· nα da

− zαj

ραj |δVα|

∫
δAαβ

[
ρj(wj

αβ − v
j)
]
· nα da (69)
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which represents the rate of exchange of charge of constituent j from phase
β to phase α not due to mass exchange. Using the continuity equation, (42),
equation (68) may be re-written as:

εαραj
Dαjzαj

Dt
+∇ · (εαJ αj ) = εαq̂αj +

∑
β 6=α

εαραj Ẑ
αj

β (70)

Summing over constituents yields

∇ · (εαJ α + εαqαe v
α) +

∂

∂t
(εαqαe ) =

∑
β 6=α

εαρα(Ẑ
α

β + zαêαβ ), (71)

where the following restrictions apply

N∑
j=1

[
q̂αj + ραjzαj r̂αj

]
= 0 ∀ α (72)

εαραj (Ẑ
αj
β + zαj ê

αj
β ) + εβρβj (Ẑ

βj
α + zβj êβjα ) = 0 j = 1, ..., N. (73)

Equation (73) corresponds precisely with the classical jump condition across a
discontinuous interface [15]:

n · [[J + qe(v −w)]] = 0. (74)

Linear Momentum Balance
The macroscale linear momentum equation is given by

εαραj
Dαjvαj

Dt
−∇ · (εαtαj )− εαραj (gαj + gαjI )− εαqαje ET

+
1
2
ε0ET ·Eαj∇εα − εαP αj ·∇ET = εαραj î

αj
+
∑
β 6=α

εαραj T̂
αj

β (75)

where ET is the upscaled (total) electric field and is related to the species

electric field by ET =
N∑
j=1

∑
α

εαEαj , and

T̂
αj

β =
1

ραj |δVα|

∫
δAαβ

[
(tj)T +EDj − 1

2
ε0E

j ·EI + ρjvj(wj
αβ − v

j)
]
· nα da

− vαj

ραj |δVα|

∫
δAαβ

ρj(wj
αβ − v

j) · nα da+
1
ραj

d̂
αj

β ET (76)

represents the effect constituent j of phase β has on the rate of change of me-
chanical momentum of the same constituent in phase α. The relation between
the other macroscale variables and their microscale counterparts are given in
Appendix C.
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There are a couple of additional forces in this form compared to the classical
form due to the introduction of the species electric field, Eαj , and the volume
fraction εα. The first we consider an additional (internal) body force, gI . It
is due to the difference between E and Ej (see Appendix C), and so if the
source of the electric field is dominated by one charged species, then this term
is negligible. The other additional term involves the gradient of the volume
fraction. If the medium is homogeneous in volume fraction (εα is constant),
then this term is zero. The form of this equation is motivated by the form of
T̂
αj

β , which we choose to be consistent with the jump condition associated with
momentum balance.

Summing over j yields

εαρα
Dαvα

Dt
−∇ · (εαtα)− εαρα(gα + gαI )− εαqαeET − εαP α ·∇ET

1
2
ε0ET ·Eα∇εα =

∑
β 6=α

εαραT̂
α

β , (77)

with restrictions

N∑
j=1

ραj (̂i
αj

+ r̂αjvαj ) = 0 ∀ α (78)

εαραj (T̂
αj

β + ê
αj
β v

αj ) + εβρβj (T̂
βj

α + êβjα v
βj ) = 0 j = 1, ..., N. (79)

The jump condition across a discontinuous interface is [15]:

n · [[ρv(v −w)− t− tE ]] = 0 (80)

where w is the speed of the discontinuity and for the electroquasistatic case
considered here,

F e =∇ · tE =∇ · (DE − 1
2
ε0E ·EI). (81)

Equation (80) can be shown to correspond directly with (79) using (53).

Angular Momentum Balance
The macroscale form of the conservation of angular momentum equation in
indicial notation is

−εαεklmt
αj
kl − ε

αεklmP
αj
k (ET )l = εαραjm̂αj

m + εαραjMαj
m

+
∑
β 6=α

εαραj (m̂αj
β )m (82)

where the definitions of all variables are given in Appendix C. Thus the macroscale
equation is composed of two parts. The equation consisting of all but the term
involving Mαj is the macroscale form of the microscale equation. The term
Mαj contains all terms arising from the the microscale conservation of linear
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momentum crossed with ξ and volume averaged. These additional terms for the
purely mechanical case have been derived before ([16, 22]). The term in Mαj

involving the time rate of change of velocity is known as inertial [16] or local
[22] spin. The term in Mαj involving tj has been referred to as the first sur-
face stress moment [16], or apparent couple stress tensor [22]. One observation
which is painfully clear is that even in a medium which contains no electric field
or charge, the mixture of two media which have symmetric stress tensors may
result in a macroscopic medium which has a non-symmetric stress tensor.

Summing over j yields

−εαεklmtαkl − εαεklmPαk (ET )l = εαραjMα
m +

∑
β 6=α

εαρα(m̂α
β )m (83)

where we note that symmetry of the stress tensor is lost due to possible polar-
ization of the medium, the microscale angular momentum, and the interaction
of the phase with other phases.

The restriction which must hold to preserve angular momentum within a
phase is

N∑
j=1

ραjm̂
αj = 0 ∀ α. (84)

The restriction which arises from the assumption of no interfacial angular mo-
mentum is

εαραjm̂
αj
β + εβραβm̂

βj
α = 0 j = 1, ..., N. (85)

Conservation of Energy
The conservation of energy equation is given by

εαραj
Dαjeαj

Dt
− εαtαj :∇vαj−∇ · (εαqαj )− εαραjhαj− εαJ αj ·ET

−∂(εαP αj )
∂t

·ET −∇ · (εαvαjP αj ) ·ET −
1
2
ε0ET ·Eαj D

αjεα

Dt

= εαραj Q̂αj+
∑
β 6=α

εαραj Q̂
αj
β (86)

where

Q̂
αj
β =

1
ραj |δVα|

∫
δAαβ

[
qj +

(
tj +DjE − 1

2
e0(Ej ·E)I

)
· vj

+ρj(ej +
1
2
vj · vj +

1
2
ε0E

j ·E)(wj
αβ − v

j)
]
· nα da

−
eαj − 1

2v
αj · vαj

ραj |δVα|

∫
δAαβ

ρj(wj
αβ − v

j) · nα da

− vαj

ραj |δVα|
·
∫
δAαβ

[
(tj)T +EDj − 1

2
ε0(Ej ·E)I + ρjvj(wj

αβ − v
j)
]
· nα da
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+
1

ραj |δVα|

∫
δAαβ

[(
− ε0E

jE + ε0(Ej ·E)I
)
· vj +Hj ×E

]
· nα da

−d̂
αj

β ET · vαj − ĥ
αj

β ·ET (87)

represents the effect constituent j of phase β has on the rate of change of energy
of the same constituent in phase α due to non-mass transfer, non-mechanical
means. The relation between the other macroscale variables and their microscale
counterparts are given in Appendix C. As in the linear momentum equation,
upscaling produces an additional term involving the material time rate of change
of the volume fraction. This term would be negligible in a non-swelling porous
medium. Additional effects of fluctuations in the species electric work terms
manifest themselves in the flux term, qαj , and the external source term, hαj .

Summing over constituents yields

εαρα
Dαeα

Dt
− εαtα :∇vα −∇ · (εαqα)− εαραhα − εαJ α ·ET −

∂(εαP α)
∂t

·ET

−∇ · (εαvαP α) ·ET −
1
2
ε0E

α ·ET
Dαεα

Dt
=
∑
β 6=α

εαραQ̂αβ (88)

with the restrictions
N∑
j=1

[
ραj Q̂αj + ραj î

αj · vαj + ραj r̂αj
(
eαj +

1
2

(vαj )2

)]
= 0. ∀ α (89)

[
εαραj Q̂

αj
β + εαραj T̂

αj

β · vαj + εαραj ê
αj
β

(
eαj +

1
2

(vαj )2

)]
+
[
εβρβj Q̂βjα + εβρβj T̂

βj

α · vβj + εβρβj êβjα

(
eβj +

1
2

(vβj )2

)]
= 0 j = 1, ..., N.

(90)

The first restriction states that energy must be conserved within a phase, and
the second states that the interface can hold no energy.

We wish to compare (90) with the jump discontinuity condition. Various
forms exist depending on what is considered negligible and the use of Maxwell’s
equations. Here we consider[[
q + t · v + (ρe+

1
2
ρv2)(w − v) +

1
2
ε0(E ·E)w +H ×E + PE · v

]]
· n = 0. (91)

Equation (90) can be re-written as:

1
|δV|

∫
δAαβ

[
qj+

(
tj+P jE

)
·vj+ ρj(ej +

1
2

(vj)2)(wj
αβ− v

j)

+
1
2
ε0(Ej ·E)wj

αβ +Hj ×E
]
·nα da

=
1
|δV|

∫
δAαβ

[
qj +

(
tj + P jE

)
· vj + ρj(ej +

1
2

(vj)2)(wj
αβ − v

j)
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+
1
2
ε0(Ej ·E)wj

αβ +Hj ×E
]
· nβ da. (92)

Comparing terms we see that the condition involving exchange of energy
across the interface, (90), conforms exactly with the classical jump condition
(91).

Entropy Balance
The entropy balance for constituent j in phase α is given by

εαραj
Dαjηαj

Dt
−∇·εαφαj−εαραj bαj =

∑
β 6=α

εαραj Φ̂
αj

β +εαραj η̂αj+εαραj Λ̂αj

(93)
where Φ̂

αj

β represents the rate at which entropy is gained from constituent j
in phase β. Summing over constituents we get

εαρα
Dαηα

Dt
−∇ · (εαφα)− εαραbα =

∑
β 6=α

εαραΦ̂
α

β + εαραΛ̂α, (94)

with restrictions

N∑
j=1

ραj (η̂αj + r̂αjηαj ) = 0 ∀ α. (95)

εαραj (Φ̂
αj

β + ê
αj
β η

αj ) + εβρβj (Φ̂
βj

α + êβjα η
βj ) = 0 j = 1, ..., N. (96)

The second condition is exactly analogous to the classical jump boundary con-
dition applied at an interface. This equation can be used to obtain restrictions
on the forms of constitutive equations using, for example, the Coleman and Noll
method (see e.g. [4, 13]). At this point we make no assumptions regarding the
form of the entropy flux or source. It is now postulated that the rate of entropy
production is non-negative after summing over both species and phases. Our
statement at the end of Section 2 need not hold in this case, as it is the rate of
entropy production of the universe which is non-negative.

4 Discussion

We have provided the microscale and macroscale balance laws for a multiphase,
multi-species, swelling system which incorporates electroquasistatics. The mi-
croscale derivation follows the approach of Eringen and Maugin [15], while the
upscaling to the macroscale is achieved via spatial averaging. The species elec-
tric field, Eαj , is carefully defined and the complete relations between the mi-
croscopic and macroscopic variables and the species and bulk phase variables
are provided. Further comparisons were made between restrictions required to
hold at interfaces and jump conditions classically used at interfaces.



Swelling Porous Media with Electroquasistatics 21

In regards to the conservation of momentum and energy, there are several
ways in which one can group together terms into the definitions of the macro-
scopic variables. In this paper, we choose the macroscopic definitions in a way
which results in consistency between restriction conditions at interfaces and
classical jump conditions used at interfaces. But as a consequence, additional
body sources appear due not to external sources but due to species electric fields
and microscopic fluctuations of the work terms. Further, there are additional
terms which appear due to gradients in volume fractions and material time rate-
of-change of the volume fractions in the conservation of momentum and energy
equation, respectively. This is not due to the primitive choice of F je and W j

e (see
equations (33-35)). Rather it is a consequence of the choice of grouping terms
so as to recover classical jump conditions. The consequence of these additional
terms needs to be investigated. This is partially done in part II of these papers.

The field equations are required for many practical applications including,
but not limited to, swelling clays (smectites), biopolymers, biological mem-
branes, pulsed electrophoresis, and chromatography. In part II of these papers
we exploit the entropy inequality with independent variables consistent with
several natural systems and apply the resulting constitutive theory near equi-
librium for two problems: electrolyte transport in swelling clays and pulsed
electrophoresis.
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Appendix A. Nomenclature

Superscripts, Subscripts, and Other Notations

·αj jth component of α-phase on mesoscale

·α α-phase on mesoscale

·̃ fluctuation from averaged quantity

·̂ denotes exchange from other interface or phase

·k,l difference of the two quantities, i.e. ·k − ·l

·|αj microscopic property of constituent j in phase [subscript] (non-averaged)

Latin Symbols

δAαβ : Portion of αβ-interface in representative elementary volume (REV)

bαj , bα: External entropy source [J/(Kg-s-◦K)]

Cαj : Mass fraction of jth component [-]

Dαj ,Dα: Electric displacement [C/m2]

d̂
αj

: Net effect other constituents have on the charge of constituent j within
phase α in Gauss’ Law [C]

d̂
αj

β : Net effect phase β has on the charge of constituent j in phase α in Gauss’
Law [C]



Swelling Porous Media with Electroquasistatics 25

eαj , eα: energy density [J/Kg]

ê
αj
β : Rate of mass transfer from phase [subscript] to phase [superscript] per

unit mass density [1/s]

Eαj ,Eα: Electric Field intensity generated by (the jth constituent of) phase
α [V/m]

gαj , gα: External supply of momentum (gravity) [m/s2]

g
αj
I , g

α
I : Internal supply of momentum due to fluctuations in Kelvin and

Lorentz forces [m/s2]

hαj , hα: External supply of energy [J/(Kg-s)]

ĥ
αj
, ĥ

α
: Free current density induces by other species within the same phase

within Ampère’s law [A/m2]

ĥ
αj

β , ĥ
α

β : Free current density induces by other phases on species j in Ampère’s
law [A/m2]

î
αj

: Rate of momentum gain due to interaction with other species within the
same phase per unit mass density [N/Kg]

Hαj ,Hα: Magnetic field intensity [A/m]

î
αj

: Rate of momentum gain due to interaction with other species within the
same phase per unit mass density [N/Kg]

Jαj ,Jα: Free current density in a fixed frame of reference [A/m2]

J αj ,J α: Free current density in the material frame of reference [A/m2] =
[C/m2-s]; J αj = Jαj − qαje vαj

m̂
αj : Rate of angular momentum gain due to interaction with other species

within the same phase per unit mass density [N-m/Kg]

m̂
αj
β : Rate of angular momentum gain by constituent j in phase α due to

interaction with phase β [N-m/Kg]

Mαj : Rate of angular momentum gain due to the microscale angular momen-
tum terms - see Appendix C [N-m/Kg]

nα: Unit normal vector pointing out of α-phase within mesoscopic REV [-]

P αj ,P α: Polarization density averaged over α-phase [C/m2]

q
αj
e , qαe : Charge density averaged over α-phase [C/m3]
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m̂
αj : Rate of gain of angular momentum of consitutent j from other con-

stituents in phase α [m2/s2]

qαj : Partial heat flux vector for the jth component of phase [J/(m2-s)]

qα: Heat flux vector for phase α [J/(m2-s)]

q̂αj : Net rate of charge density gain by species j due to interaction with
other species within phase α (does not include that gained to due mass
transfer). [C/m3-s]

Q̂αj : Rate of energy gain due to interaction with other species within the
same phase per unit mass density not due to mass or momentum transfer
[J/(Kg-s)]

Q̂
αj
β , Q̂

α
β : Energy transfer rate from phase [subscript] to phase [superscript]

per unit mass density not due to mass or momentum transfer [J/(Kg-s)]

r: Microscale spatial variable [m]

r̂αj : Rate of mass gain due to interaction with other species within the same
phase per unit mass density [1/s]

t: Time [s]

T : Temperature [◦K]

tαj : Partial stress tensor for the jth component for phase [N/m2]

tα: Total stress tensor for the phase [N/m2]

T̂
αj

β , T̂
α

β : Rate of momentum transfer through mechanical interactions from
phase [subscript] to phase [superscript] per unit mass density [N/Kg]

vαj ,vα: Velocity [m/s]

δV: Representative elementary volume (REV)

δVα: Portion of α-phase in REV

wj
αβ : Velocity of constituent j at interface between phases α and β [m/s]

x: Macroscale spatial variable [m]

zαj : Charge per unit mass density of constituent j in phase α [C/Kg], qαje =
ραjzαj

Ẑ
αj

β , Ẑ
α

β : Rate of exchange of charge of constituent j from phase β to phase
α per unit mass [C/Kg-s]

Greek Symbols
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γα: Indicator function which is 1 if in mesoscopic region α and zero otherwise

εα: Volume fraction of α-phase in mesoscale REV [-]

ε0: Permittivity in a vacuum. In MKS units, the permittivity has the value
of 8.854× 10−12 Farads per meter.

εklm: Permutation tensor

Λ̂αj , Λ̂α: Entropy production per unit mass density [J/(Kg-s-◦K)]

ξ: Microscale spatial variable which varies over REV for fixed x: r = x + ξ
[m]

ηαj , ηα: Entropy [J/(Kg-◦K]

η̂αj : Entropy gain due to interaction with other species within the same
phase/interface per unit mass density [J/(Kg-s-◦K)]

φαj : Partial entropy flux vector for the jth component for phase [J/(m2-s-◦K)]

φα: Total entropy flux vector for the phase [J/(m2-s-◦K)]

Φ̂
αj

β , Φ̂
α

β : Entropy transfer through mechanical interactions from phase [sub-
script] to phase [superscript] per unit mass [J/(kg-s-◦K)]

ραj : Partial mass density of jth component of α-phase [Kg/m3] so that εαραj

is the total mass of jth constituent in phase α divided by the volume of
REV

ρα: Mass density of α-phase averaged over α-phase [Kg/m3]

σ̂αj : Induced curl of electric field of species j due to presence of other species
within the same phase. See Faraday’s law. [V/m]

σ̂
αj
β : Effect constituent j of phase β has on the curl of the electric field of

phase α [V/m]

Appendix B. Definition of Macroscopic Bulk Variables

The relationships between the macroscopic constituent variables and their
bulk counterparts follow:

ρα =
N∑
j=1

ραj , (B.1)

Cαj =
ραj

ρα
, (B.2)
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vα =
N∑
j=1

Cαjvαj , (B.3)

êαβ =
N∑
j=1

Cαj ê
αj
β , (B.4)

Jα =
N∑
j=1

Jαj (B.5)

J α =
N∑
j=1

J αj + qαje v
αj ,α, (B.6)

Dα =
N∑
j=1

Dαj (B.7)

P α =
N∑
j=1

P αj (B.8)

Eα =
N∑
j=1

Eαj (B.9)

qαe =
N∑
j=1

qαje , (B.10)

d̂
α

β =
N∑
j=1

d̂
αj

β (B.11)

σ̂αβ =
N∑
j=1

σ̂
αj
β (B.12)

Hα =
N∑
j=1

(Hαj − P αj × vαj ,α) (B.13)

ĥ
α

β =
N∑
j=1

ĥ
αj

β (B.14)

zα =
N∑
j=1

Cαjzαj (B.15)

Ẑ
α

β =
N∑
j=1

Cαj (Ẑ
αj

β + ê
αj
β z

αj ,α) (B.16)

tα =
N∑
j=1

[tαj− ραjvαj ,αvαj ,α] , (B.17)
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gα =
N∑
j=1

Cαjgαj , (B.18)

gαI =
N∑
j=1

Cαjg
αj
I

(B.19)

T̂
α

β =
N∑
j=1

Cαj
(
T̂
αj

β + ê
αj
β v

αj ,α
)

+
1
ρα
d̂
α

βET , (B.20)

m̂
α
β =

N∑
j=1

Cαjm̂
αj
β , (B.21)

Mα =
N∑
j=1

CαjMαj , (B.22)

eα =
N∑
j=1

Cαj
(
eαj +

1
2
vαj ,α · vαj ,α

)
, (B.23)

qα =
N∑
j=1

[
qαj + tαj · vαj ,α − ραjvαj ,α

(
eαj +

1
2

(vαj ,α)2

)
+ vαj ,αP αj ·ET

]
,

(B.24)

hα =
N∑
j=1

Cαj (hαj + (gαj + gαjI ) · vαj ,α), (B.25)

Q̂αβ =
N∑
j=1

Cαj
[
Q̂
αj
β + T̂

αj

β · vαj ,α + ê
αj
β

(
eαj ,α +

1
2

(vαj ,α)2

)

−d̂
α

βEt · vα − ĥ
α

β ·ET

]
, (B.26)

ηα =
N∑
j=1

Cαjηαj , (B.27)

φα =
N∑
j=1

(φαj − ραjηαjvαj ,α) , (B.28)

bα =
N∑
j=1

Cαj bαj , (B.29)

Φ̂
α

β =
N∑
j=1

Cαj
(

Φ̂
αj

β + ê
αj
β η

αj ,α
)
, (B.30)
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Λ̂α =
N∑
j=1

Cαj Λ̂αj , (B.31)

(B.32)

Appendix C. Relationship between Macroscopic and Microscopic
Variables

For notational brevity, define the volume average over phase α with angle
brackets:

< ψj>α (x, t) =
1
|δVα|

∫
δV

ψj(r, t)γα(r, t) dv(ξ) (C.1)

so that if for example, ρj is constant throughout phase α then < ρj >α would
be that constant density.

Similarly we define the mass average to be

ψj
α

(x, t) =
1

< ρj>α |δVα|

∫
δV

ρj(r, t)ψj(r, t)γα(r, t) dv(ξ). (C.2)

Thus for example, while the volume average of velocity makes no physical
sense, the mass average (momentum) does.

The relationships between the macroscopic constituent variables and their
microscopic counterparts follow. There are no assumptions made about small
fluctuations about the average. What follows is exact.

ραj = < ρj>α (C.3)

vαj = vj
α

(C.4)

r̂αj = r̂j
α

(C.5)

ê
αj
β =

1
ραj |δVα|

∫
δAαβ

ρj(wj
αβ − v

j) · nα da (C.6)

(C.7)
Jαj = < J j>α (C.8)
J αj = < J j>α + < qjev

j>α −qαje vαj (C.9)
Dαj = <Dj>α (C.10)
P αj = < P j>α (C.11)
Eαj = < Ej>α (C.12)

ET =
∑
α

εα < E>α=
1
|δV|

∫
δV
E dv (C.13)

qαje = < qje>
α (C.14)
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d̂
αj

= < d̂
j
>α (C.15)

d̂
αj

β = − 1
|δVα|

∫
δAαβ

Dj · nα da (C.16)

σ̂αj = < σ̂j>α (C.17)

σ̂
αj
β = − 1

|δVα|

∫
δAαβ

nα ×Ej da (C.18)

Hαj = <Hj >α +
[
P αj × vαj− < P j × vj >α

]
(C.19)

ĥ
αj

β =
1
|δVα|

∫
δAαβ

[
Djwj

αβ · n
α − (Hj − P j × vj)× nα

]
da (C.20)

ĥ
αj

= < ĥ
j
>α (C.21)

zαj = zj (C.22)

q̂αj = < q̂je>
α +εαραjzj r̂j

α

− εαραj r̂αjzαj (C.23)

Ẑ
αj

β =
1

ραj |δVα|

∫
δAαβ

[
qje(w

j
αβ − v

j)−J j
]
· nα da

− zαj

ραj |δVα|

∫
δAαβ

[
ρj(wj

αβ − v
j)
]
· nα da (C.24)

tαj = < tj>α +ραjvαjvαj − ραjvjvj
α

+ <DjE>α −DαjET

+
1
2
ε0

[
Eαj ·ET− < Ej ·E>α

]
I (C.25)

gαj = gj
α

(C.26)

g
αj
I =

ε0

2ραj
[
∇ET ·Eαj− <∇E ·Ej>α −∇Eαj ·ET+ <∇Ej ·E>α

]
(C.27)

î
αj

= î
j
α

+ r̂jvj
α

− r̂αjvαj +
1
ραj

(d̂
αj
ET− < d̂

j
E>α) (C.28)

T̂
αj

β =
1

ραj |δVα|

∫
δAαβ

[
(tj)T +EDj − 1

2
ε0E

j ·EI + ρjvj(wj
αβ − v

j)
]
· nα da

− vαj

ραj |δVα|

∫
δAαβ

ρj(wj
αβ − v

j) · nα da+
1
ραj

d̂
αj

β ET (C.29)

m̂
αj = < m̂

j
>α − 1

ρj
[
< P j ×Ej>α −P αj ×Eαj

]
(C.30)

(m̂αj
β )m =

1
ραj |δVα|

∫
δAαβ

[
εklmξk

(
tnl + vl((w

j
αβ)n − vjn)

]
nn da (C.31)

(Mαj )m = − ∂

∂t

(
εαραj εklmξkv

j
l

α)
−
[
εαραjvjn(εklmξkv

j
l )
α]
,n

+
[
εα < εklmξkt

j
nl>

α
]
,n

+ εαραj εklmξkg
j
l

α

+ εα < εklmξk(F je )l>α

+εα < εklmξk(ρj î
j

k + ρj r̂jvjk)>α (C.32)
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eαj = ej
α

+
1
2
vj · vj

α
− 1

2
vαj · vαj +

ε0

ραj

[
< Ej ·E>α −Eαj ·ET

]
(C.33)

qαj = < qj>α + < tj · vj>α −tαj · vαj + ραjvαj (eαj +
1
2
vαj · vαj )− ραjvj(ej +

1
2
vj · vj)

α

+ < E ×Hj>α −ET ×Hαj+ < P jvj ·E>α −P αjvαj ·ET (C.34)

hαj = hj
α

+ gj · vj
α
− gj

α
· vαj

+
ε0

2ραj

[
∂Eαj

∂t
·ET −

〈
∂Ej

∂t
·ET

〉α
+
〈
∂E

∂t
·Ej

〉α
− ∂ET

∂t
·Eαj

]
(C.35)

Q̂αj = Q̂j
α

+ î
j
· vj

α

− î
αj · vαj + (ej +

1
2
vj · vj)r̂j

α

− (ej +
1
2
vj · vj)

α

r̂αj

+
1
ραj

[
< ĥ

j
·E>α −ĥ

αj ·ET

]
(C.36)

Q̂
αj
β =

1
ραj |δVα|

∫
δAαβ

[
qj +

(
tj +DjE − 1

2
ε0(Ej ·E)I

)
· vj

+ρj(ej +
1
2
vj · vj +

1
2
ε0E

j ·E)(wj
αβ − v

j)
]
· nα da

−
eαj − 1

2v
αj · vαj

ραj |δVα|

∫
δAαβ

ρj(wj
αβ − v

j) · nα da

− vαj

ραj |δVα|
·
∫
δAαβ

[
(tj)T +EDj − 1

2
ε0(Ej ·E)I + ρjvj(wj

αβ − v
j)
]
· nα da

+
1

ραj |δVα|

∫
δAαβ

[(
− ε0E

jE + ε0(Ej ·E)I
)
· vj +Hj ×E

]
· nα da

−d̂
αj

β ET · vαj − ĥ
αj

β ·ET (C.37)

ηαj = ηj
α

(C.38)

φαj = 〈φj〉α + ραjvαjηαj − ραjvjηj
α

(C.39)

bαj = bj
α

(C.40)

Φ̂
αj

=
1
|δV |

∫
δAαβ

[
φj + ρjηj(wj

αβ − v
j)
]
· nα da− ηαj

|δV |

∫
δAαβ

ρj(wj
αβ − v

j) · nα da

(C.41)

η̂αj = εαραj
(
η̂j
α

+ r̂jηj
α

− r̂αjηαj
)

(C.42)

Λ̂αj = Λj
α

(C.43)


